
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1170
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

AUTOMATIC TEST CASES GENERATION
USING BEHAVIOUR ANALYSIS FOR

SPECIFICATION MINING
Mahendran.N, Kamalraj.R, Karthik.S

Abstract- Software testing refers to the process of validating and verifying a software product to meet the requirements in design and development.
Specification mining deals with the extraction of high level specifications from the existing code. To have mined specifications dynamic specification
mining is used to infer common properties executions. To enrich the specification TAUTOKO tool is used to generate the test cases. This tool could not
handle the methods and unable to generate call to methods and unable to modify the test and cannot observe the method call in the desired state. To
deal this limitation integration of special test cases is done for method invocation that are invoked during pre-processing stage. Integration of test cases,
which only deal the method calls and method specific operations for behavioural analysis of the executable program. It will check the methods and its
return variables.

Index Terms: Finite state automata, Specification mining, Type state miner, TAUTOKO

1 INTRODUCTION
Software testing is done by two Types. They are manual

testing and automated testing. Manual testing is the process
of manually testing software for defects. It requires a tester
to play the role of an end user and use most of all features
of the application to ensure correct behaviour. Automated
testing is the software tested to control the execution of
tests.

Specification mining extracts the high level specification
from the existing code. These high level specification are
described by their behaviour and structure of the program.
The test cases are generated by inferring the commonly
observed behaviour of the programming structure.
Observed behaviour are put into common class under test
for generating the test cases. Various tools used for
generating test cases are ADABU,DAIKON.

 To infer the transitions between program structure and
generate test cases TAUTOKO tool is used. TAUTOKO is a
open source tool to generate test cases for specification
mining. This Typestate miner generates the test cases by
observing the behaviour of the programming model. The
behaviour represents the branch coverage , return variables.

The commonly observed behaviour are put in common
class under test and it is mutated to perform for generating
the test cases. Main issues in this technique is that it cannot
generate the test cases for method invocation and cannot
synthesis parameter values. So it unable to produce more
number of fault transitions during testing.

2 RELATED WORK

2.1 GENERATION OF TEST CASES: STATIC
SPECIFICATION MINING

An approach for generating test cases for static
specification mining is researched. The idea was to combine
the specification mining with the test case generation. The
core is to provide a generic feedback loop framework where
specifications are fed into a test case generator, the
generated tests are used to refine the specifications, and the
refined specifications are again given as input to the test
case generator. Extension of the work is done by providing
an implementation of the framework for typestate mining,
as well as an evaluation of how useful enriched
specifications are for a real-world application. There is a
large body of work on test case generation. Several
approaches use simple randomized algorithms to generate
tests. Ciupa et al apply random testing to several industrial
sized applications.Symbolic execution simulates execution
of the program using symbolic values rather than concrete
ones and relies on constraint solvers to derive test data [10].

2.2 USING TEST SUITE TO GENEARTE TEST SUITE

It is done by mapping STRIPS planning language. Test
cases are automatically generated from use cases by formal
transformation of a detailed use case description including
pre- and post conditions to a UML state model , Generation
of test cases from the state model. The Preconditions and
Postconditions sections of the use case template allow us to
specify the contract of the use case. Preconditions describe
verifiable conditions, which must hold before the execution
of the use case. The preconditions of the use case as
constraints on the first state representing the use case.
Postcondition on a state can be modelled using a superstate
with two substates.

These actions formalise the idea that the use case
establishes the postconditions on successful completion.
These action statements during test suite planning, when
the actions establishing a condition with the preconditions

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Software_testing

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1171
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

of other use cases or steps requiring this condition. The test
sequences derived from the state machine are consistent in
the sense that the preconditions of all transitions in the
sequence are satisfied. A coherent procedure to derive test
cases from use cases in a formal and partly automatic way
by the expected system responses have to be added to the
test sequence manually to yield complete test cases[5].

2.3 TEST CASES GENERATION BY MUTANTS

 A new symbolic procedure for the automated
generated of test cases from a set of mutants using bounded
model checking . Mutation testing is a powerful testing
technique based on the idea of making changes to a
syntactic description of a computing task and deriving test
cases from these changes. The changes mimic mistakes
programmers or designers make during the description of
the computing task. Mutation testing provides a fault-based
test criterion, called mutation adequacy, i.e., a rule
imposing test requirements on the test bench that good test
cases should examine. Program-based mutation testing
forms a three step test process as given a program and a test
bench. The program is seeded with artificial faults
according to a fixed fault model. Each seeded fault is kept
in an individual copy of the original program source, called
mutant. Each test case from the test bench is then executed
on the original program and on its mutants. The problem of
automatically generating test cases from undetected faults
is typically not addressed by existing mutation testing
systems. To overcome this a symbolic procedure SymBMC
usedfor the generation of test cases from a given program
using Bounded Model Checking (BMC) techniques. The
SimplifiedBMC procedure attempts to generate a test case
for a program and one of its mutants, whereas the
SymBMC procedure generalizes the approach to generate
test cases from a set of mutants[2].

2.4 MODEL DRIVEN APPLICATION FOR DERIVING
TEST CASES.

The proposed approach is to generate test cases for
graphical user interface applications. GUIs lend themselves
to the feedback-based approach for producing test cases
that exhaustively test only two-way interactions between
GUI events. GUI testing is important because GUIs are used
as front-ends to most software applications and constitute
as much as half of software’s code. A correct GUI is
necessary for trouble-free execution of the application’s
underlying business logic. Finite state machines have been
used to model GUI. A GUI’s state is represented in terms of
its windows and widgets and each user event triggers a

transition in the FSM. A test case is a sequence of user
events and corresponds to a path in the FSM. As is the case
for conventional software, FSMs for GUIs also have scaling
problems, this is due to the large number of possible states
and user events in modern GUIs. The new feedback-based
technique has been used in a fully automatic end-to-end
process for a specific type of GUI testing. The technique
uses feedback from the execution of a seed test suite, which
is generated automatically using an existing structural
event-interaction graph model of the GUI. During its
execution, the run-time effect of each GUI event on all other
events pinpoints event-semantic interaction (ESI)
relationships, which are used to automatically generate
new test cases[12].

2.5 AUTOMATICALLY GENERATING TEST CASES
FROM SYSTEM REQUIREMENTS MODELS

The researched work is to generate test cases from
system requirement models. Software related accidents
occurs when requirements are miscommunicated to the
developers or are not delivered to them at all. Test cases
generated directly from system requirements can be used to
detect such errors. Safeware has developed a technique for
automatically generating test cases from SpecTRM-RL
models. SpecTRM-RL is a requirements-specification
language that is based on a formal state machine Model. A
SpecTRM-RL model describes system inputs, outputs, state
values, and internal modes. A state value represents
information inferred by the system regarding the current
operating environment. Internal modes represent different
collections of behaviour. For test case generation
automatically it identifies a input sequence that satisfying
the basic condition. The algorithm for determining input
sequences for satisfying conditions starts by making a list of
all the conditions in the model. Each of these conditions is
initially marked “unsatisfied”, indicating no input sequence
has been identified to satisfy the condition. As input
sequences are found to satisfy the conditions, they are each
marked satisfied. These conditions and any other condition
that must be satisfied at System Start are automatically
satisfied. Software has developed algorithms to
automatically generate test cases directly from SpecTRM-
RL requirements models[3].

3 TEST SUITE GENERATION

 Test suite are produced at the pre-processing stage. In
this pre-processing state. Input data set are given as any
java class file and it parses the methods and variables. It
checks for the exceptions and control flow in the class file. It
checks the initialisation and setup function for the java unit
test cases are implemented and verified. Finite state

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1172
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

automata is used to encode the program structure and
observe the common behaviour. It is done for finding the
equivalent object states. The whole file setup are organised
into four stages for test suite generation. They are setup,
connect, authenticate, quit. These stages cover test suite that
are build successfully or with any constraints. These
constraints normally occurs with missing of previously
described stages. For example consider any protocol stages.
The initial parameters are covered in the setup functions
and their establishment part are prescribed in the
authenticate and connect functions and stages completing
these are passed without any pointer exceptions and
interfaces implementations. Consider the Figure 1 for test
suite generation checking stages and later for type state
mining prescribed below .

4 TYPE STATE MINING

 In the Typestate mining different sets of objects and
transitions are labelled with names. Labeling of mined
Typestate is done to check object behavior at the dynamic
loading of java class file. Processing of these instructions are
done by observing programming behavior with their states.

Structure of the program is classified based on their
initialisation and execution part and it is given as input for
Typestate mining.To label the mined state it need to
initialized with start and end variable. It is accomplished
with transitions state to display the connected state and non
covered state.

 Consider Figure 1.the SMTP Protocol class for
Typestate mining. First protocol state is initialised and
checked for Typestate as 0. It then check for connected state
with the objects referenced to the initialized part. If any of
the missing transitions or branch coverage is not analyzed it
returns the state as 1. It indicates the termination of the
program state and looks for the initial state.

Figure 1.Type state for SMTP protocol

If any method in the Typestate causes an exception, it
contains a transition from state to a special state ex labeled
with method labelled name for branch coverage. If quit() is
invoked from the initial state 0, this raises a
NullPointerException. Transitions occurs when a method
invoked on initialisation part changes its state. Object
behaviour model are mined by the Type state miner from
the execution of initially generated test suite. This stage
express their connect functions that are covered in it.
Initially it displays the INIT,QUIT,AUTHENTICATE states
to 0. If the connect function not established it displays INIT
state to 1 and others as 0. It shows the amount of transitions
that covered in mining type state is larger than test suite.
Consider the Table 1 and Table 2 for initial and mining type
states transitions. The Table 1 describes about the initial test
transitions from the input test class files. The occurrences of
the class without method transitions are shown. In Table 2
mined type state with the mutants are described. It takes
the transitions from all the prescribed states of class file
with the references of states as prescribed earlier.

TABLE 1

Test suite generation statistics of SMTP protocol

Subject State Transitions Exceptional
conditions

SMTP
PROTOCOL
(mailing protocol)

131 61 11

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1173
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

TABLE 2

Test state mining statistics of SMTP protocol

Subject Mutations State Transitions Exp-
condition

SMTP
PROTOCOL

231 391 270 151

5 MUTATION OF TESTCASES

 After generating the test suite and mining model for
observed behaviour it is considered as initial model. Initial
models then generates mutants for all methods that are
executed in all states of initial model. Next initial model
and all new model are combined and put into a common
class under test. It allows to mine the model from each test
and results in generating tests and for combining models in
CUT.

The enriched Typestate checks the defects of wrong
usage class. Typestate miner tracks the exception from the
program. During the enriching of test cases it lacks behind
the test cases generation for branch transitions.

 Mutant generation starts by statically determining the
set of methods that belong to the CUT or one of its super
Types. For every such method m, TAUTOKO tries to
generate mutations such that m is invoked in all states of
the initial model. To invoke method m in states, TAUTOKO
will either add an invocation of m, or suppress one or more
existing method invocations. The choice of adding or
deleting invocations depends on the number and Types of
the parameters m expects. If m only requires a reference to
the receiver object, TAUTOKO simply adds a new call to m
right after a method call that caused a transition to s in the
initial model

6 TEST CASES GENERATION

 Test cases are generated by using finite state automata.
For initial test suite test cases are generated by testing frame

work. It uses branch coverage of the CUT as test objective.
If the initial test suite is small, then more iteration takes to
create an acceptable model for an initial test suite to the
target class. From this initial test suite, it derive a Typestate
automaton for generating and exploring the test cases.

 To execute each method of the CUT in every abstract
state, the set of methods are considered as inputs. First, a
branch coverage test suite is generated to bootstrap the
process, and an initial Typestate automaton is derived for
this test suite. This automaton is traversed keeping track of
the sequence of method calls that leads to the current state.
For each state, it goes through the set of methods that have
not been called in this state and generate a new test case
that calls this method in the current state. Since it using a
test generation tool for previously visited state than
mutating existing tests, it applicable to any method, even it
uses complex parameters. New test cases are executed, and
a new model is learned from these executions and merged.
This process is repeated until a fixed point is reached for
finding missing transitions and over coming it.

7 EVALUATION

 On comparing initial and enriched models in terms of
quantitative and qualitative aspects, and their effectiveness
in finding bugs when used as input to a static Typestate
verifier for comparing the test case generation techniques.
The metrics used are subject and enriching models. subjects
describes the preset data set and their evaluation by
checking with preset data from code snippets, open source
tools,..Enriching models describes about enrich model for
generation of test cases. Evaluation describes about the
number of states and transitions. For generating and
exploring type state automaton input parameters required
to evaluate are class file, methods with basic type
transitions. Table 3 shows the enriched models have more
transitions with exceptional methods parameters.

This method initially investigates the visited test
states and merge all the transitions. It invokes all the
methods and prefix the generated type state automaton. It
then recursively appends all the test class files. For
enriching the models type state are investigated and
performs the basic test suite generation of files with the
suppress calls that are initially invoked from the class files.
Figure 2 shows the enriched model of the SMTP protocol.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1174
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 2 Enriched model of smtp protocol

TABLE 3

Enriched models with more number of transitions and exceptional not covered in the methods.

Statistics State Transitions Exceptional conditions

Initial model of test suite
generation

131 61 11

Enrich model 391 271 151

Exceptional Transitions
of methods

1921 350 273

8 ENHANCEMENT

The specified technique is unable to handle methods
with parameters that are never invoked by the program.
Since it do not synthesize parameter values, TAUTOKO is
unable to generate calls to these methods and unable to
modify the test path. To overcome these limitations

proposed new methods is to deal the first two limitations
that are going to include a special test case which will deal
the method calls via checking all the methods, through
preprocessing. By adding a special case, it deals the method
calls and method specific operations. It will check the
methods and its variables, return variables, so if any of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1175
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

case above occur it will just call our new test case to deal
the issue.

9 CONCLUSION

 Dynamic specification mining depends on the observed
executions, if enough test is not done it leads to incomplete
state. To enrich the specification, TAUTOKO tool is used to
generate test cases to cover all possible transitions between
all observed states, and thus extracts additional states and
transitions from their executions. This tool cannot invoke
the methods during program call. To deal this limitation,
behavioural analysis is done to generate
automatic test cases by integration of separate test cases for
handling methods.

ACKNOWLEDGMENT
The authors would like to thank the Editor in chief,the

Associate Editor and anonymous Referees for their
comments.
REFERENCES

[1] Ashish Kumari, Noor Mohammad, Chetna,” Specification
Representation and Automatic Test Case Generation using System
Model”, IJSCE ISSN: 2231-2307, Volume-2,2012.

[2] Heinz Riener, Roderick Bloem, Gorschwin Fey,” Test Case
Generation fromMutants using Model Checking Techniques”. The
European Union (project DIAMOND, FP7-IST-4-248613),2009.

[3] Kenneth Kelley,” Automated Test Case Generation from Correct and
CompleteSystem Requirements Models”, 978-1-4244-2622-
5/09/$25.00-IEEEAC paper #1265, Version 3,2009.

[4] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem and
Mohamed F.Tolba(2011),” Test Case Generation and Test Data
Extraction Techniques”, International Journal of Electrical &
Computer Sciences IJECS-IJENS Vol: 11 No: 03,2011.

 [5] Pedro Flores and Yoonsik Cheon,” PWiseGen: Generating Test
Cases for Pairwise Testing Using Genetic Algorithms, IEEE
International Conference on Computer Science and Automation
Engineering CSAE,2011.

[6] Peter Frohlich and Johannes Link ,” Automated Test Case Generation
from Dynamic Models”, Springer-Verlag Berlin Heidelber- Elisa
Bertino (Ed.): ECOOP , LNCS 1850, pp.472–491,2000.

 [7] Mark Gabel and Zhendong Su, “Symbolic Mining of Temporal
Specifications”,international conference of software
engineering(ICSE)”,2008.

 [8] Sharon Shoham, Eran Yahav, Stephen J. Fink, and Marco
Pistoia,”StaticSpecification Mining Using Automata-Based
Abstractions”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 34, NO. 5,2008.

[9] Stephan Weibleder and Bernd-Holger Schlingloff,” Quality of
Automatically Generated Test Cases based on OCL Expressions”,
international conference of software testing(ICST),2008.

[10] Valentin Dallmeier · Nikolai Knopp · Christoph Mallon · Sebastian
Hack · Andreas Zeller(2010),” Generating Test Cases for
Specification Mining”, ACM 978-1-60558-823-0/10/07,2010.

[11] T. K. Wijayasiriwardhan P. G. Wijayarathna, and D. D.
Karunarathna,” AnAutomated Tool to Generate Test Cases for

Performing Basis Path Testing”, The International Conference on
Advances in ICT for Emerging Regions - ICTer2011 : 095-101,2011.

[12] Xun Yuan, Member, IEEE, and Atif M Memon,” Generating Event
Sequence-Based Test Cases Using GUI Run-Time State Feedback”,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,2010.

[13] Zhu Bin, Wang Anbao,” Functional and User Interface Model for
Generating Test Cases”, IEEE/ACIS international conference,2012.

[14] V.Dallmeir, C.Lindig, A.Wasylkowski,” Mining object behaviour
with ADABU,”Proc.ICSE Workshop Dynamic Analysis,May 2006.

[15] http://www.st.cs.uni-saarland.de
[16] David Lo, Shahar Maoz “Specification mining of symbolic based

scenario model”, research collection school of information system
notes.

 Mahendran.N is doing ME(software

engineering) in SNS college of technology,
Coimbatore affiliated to Anna University
Chennai, he also pursued B.tech(information
technology) in sona college of technology,
salem . His research area are software testing,
cloud computing network security.

R. Kamalraj received his B.E. degree in
Computer Science &Engineering from
Bharathiyar University, Coimbatore, Tamil
Nadu, INDIA in 2002, the M.E . degree in
Computer Science & Engineering from
Anna University, Chennai, Tamil Nadu,
INDIA in 2009, and pursuing Ph.D. degree

in Software Testing and Quality Management at Anna
niversity of Technology, Coimbatore. He has published 7
papers in international journals and 1 paper in National
Journal. He is having 9 years of teaching experience in 4
different engineering colleges. At present he is working as an
Assistant Professor in the Department of Computer Science
and Engineering at SNS College of Technology, Coimbatore.
His research interests include Software Testing, Software
Quality Management and Data Mining.

Professor Dr.S.Karthik is presently
Professor & Dean in the Department of
Computer Science & Engineering, SNS
College of Technology, affiliated to Anna
University- Coimbatore, Tamilnadu,
India. He received the M.E degree from
the Anna University Chennai and Ph.D

degree from Ann University of Technology, Coimbatore. His
research interests include network security, web services and
wireless systems. In particular, he is currently working in a
research group developing new Internet security
architectures and active defense systems against DDoS
attacks. Dr.S.Karthik published more than 35 papers in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1176
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

refereed international journals and 25 papers in conferences
and has been involved many international conferences as
Technical Chair and tutorial presenter. He is an active
member of IEEE, ISTE, IAENG, IACSIT and Indian
Computer Society.

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	Acknowledgment

